6 research outputs found

    Towards Digital Twin-enabled DevOps for CPS providing Architecture-Based Service Adaptation & Verification at Runtime

    Full text link
    Industrial Product-Service Systems (IPSS) denote a service-oriented (SO) way of providing access to CPS capabilities. The design of such systems bears high risk due to uncertainty in requirements related to service function and behavior, operation environments, and evolving customer needs. Such risks and uncertainties are well known in the IT sector, where DevOps principles ensure continuous system improvement through reliable and frequent delivery processes. A modular and SO system architecture complements these processes to facilitate IT system adaptation and evolution. This work proposes a method to use and extend the Digital Twins (DTs) of IPSS assets for enabling the continuous optimization of CPS service delivery and the latter's adaptation to changing needs and environments. This reduces uncertainty during design and operations by assuring IPSS integrity and availability, especially for design and service adaptations at CPS runtime. The method builds on transferring IT DevOps principles to DT-enabled CPS IPSS. The chosen design approach integrates, reuses, and aligns the DT processing and communication resources with DevOps requirements derived from literature. We use these requirements to propose a DT-enabled self-adaptive CPS model, which guides the realization of DT-enabled DevOps in CPS IPSS. We further propose detailed design models for operation-critical DTs that integrate CPS closed-loop control and architecture-based CPS adaptation. This integrated approach enables the implementation of A/B testing as a use case and central concept to enable CPS IPSS service adaptation and reconfiguration. The self-adaptive CPS model and DT design concept have been validated in an evaluation environment for operation-critical CPS IPSS. The demonstrator achieved sub-millisecond cycle times during service A/B testing at runtime without causing CPS operation interferences and downtime.Comment: Final published version appearing in 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2022

    Cybersecurity threat analysis, risk assessment and design patterns for automotive networked embedded systems: A case study

    Get PDF
    Cybersecurity has become a crucial challenge in the automotive sector. At the current stage, the framework described by the ISO/SAE 21434 is insufficient to derive concrete methods for the design of secure automotive networked embedded systems on the supplier level. This article describes a case study with actionable steps for designing secure systems and systematically eliciting traceable cybersecurity requirements to address this gap. The case study is aligned with the ISO/SAE 21434 standard and can provide the basis for integrating cybersecurity engineering into company-specific processes and practice specifications.Web of Science27884983

    Cybersecurity Verification and Validation Testing in Automotive

    No full text
    The new generations of cars have a number of ECUs (Electronic Control Units) which are connected to a central gateway and need to pass cybersecurity integration tests to fulfil the homologation requirements of cars. Cars usually have a gateway server (few have additional domain servers) with Linux and a large number of ECUs which are real time control of actuators (ESP, EPS, ABS, etc. – usually they are multicore embedded controllers) connected by a real time automotive specific bus (CAN-FD) to the domain controller or gateway server. The norms (SAE J3061, ISO 21434) require cybersecurity related verification and validation. Fir the verification car manufacturers use a network test suite which runs > 2000 test cases and which have to be passed for homologation. These norms have impact on the way how car communication infrastructure is tested, and which cybersecurity attack patterns are checked before a road release of an ECU/car.This paper describes typical verification and validation approaches in modern vehicles and how such test cases are derived and developed

    Towards DevOps for Cyber-Physical Systems (CPSs): Resilient Self-Adaptive Software for Sustainable Human-Centric Smart CPS Facilitated by Digital Twins

    No full text
    International audienceThe Industrial Revolution drives the digitization of society and industry, entailing Cyber-Physical Systems (CPSs) that form ecosystems where system owners and third parties share responsibilities within and across industry domains. Such ecosystems demand smart CPSs that continuously align their architecture and governance to the concerns of various stakeholders, including developers, operators, and users. In order to satisfy short-and long-term stakeholder concerns in a continuously evolving operational context, this work proposes self-adaptive software models that promote De-vOps for smart CPS. Our architectural approach extends to the embedded system layer and utilizes embedded and interconnected Digital Twins to manage change effectively. Experiments conducted on industrial embedded control units demonstrate the approach's effectiveness in achieving submillisecond real-time closed-loop control of CPS assets and the simultaneous high-fidelity twinning (i.e., monitoring) of asset states. In addition, the experiments show practical support for the adaptation and evolution of CPS through the dynamic reconfiguring and updating of real-time control services and communication links without downtime. The evaluation results conclude that, in particular, the embedded Digital Twins can enhance CPS smartness by providing service-oriented access to CPS data, monitoring, adaptation, and control capabilities. Furthermore, the embedded Digital Twins can facilitate the seamless integration of these capabilities into current and future industrial service ecosystems. At the same time, these capabilities contribute to implementing emerging industrial services such as remote asset monitoring, commissioning, and maintenance
    corecore